The Face Detection extractor identifies human faces in images and videos, extracts facial features, and optionally matches them against known identities.

Overview

The Face Detection feature extractor analyzes visual content to locate human faces, extract facial embeddings, and optionally identify individuals based on pre-enrolled face data. It supports applications such as identity verification, person tracking, and face-based content search.

Required Inputs

ParameterTypeRequiredDefaultDescription
media_urlstringYes-URL pointing to image or video file. Supported formats: JPG, PNG, MP4, MOV
min_face_sizeintegerNo40Minimum face size in pixels to detect
detection_thresholdfloatNo0.7Confidence threshold for face detection (0.0-1.0)
trackingbooleanNotrueWhether to track faces across video frames

Configurations

Detection Modes

The extractor supports different detection modes based on use case requirements:

ModeDescriptionBest For
standardBalanced accuracy and performanceGeneral face detection
high-accuracyPrioritizes detection accuracyIdentity verification
high-performancePrioritizes processing speedReal-time applications

Configuration Examples

Standard
{
  "detection_mode": "standard",
  "min_face_size": 50,
  "detection_threshold": 0.7,
  "extract_attributes": true
}
High Accuracy
{
  "detection_mode": "high-accuracy",
  "min_face_size": 80,
  "detection_threshold": 0.85,
  "extract_attributes": true,
  "extract_landmarks": true
}
High Performance
{
  "detection_mode": "high-performance",
  "min_face_size": 40,
  "detection_threshold": 0.6,
  "extract_attributes": false
}

Attribute Extraction

OptionTypeDefaultDescription
extract_attributesbooleantrueExtract facial attributes (age, gender, emotion)
extract_landmarksbooleanfalseExtract facial landmarks (eyes, nose, mouth positions)
generate_embeddingbooleantrueGenerate face embedding for identity matching
crop_facesbooleantrueGenerate cropped face images

Configuration Examples

Sample
{
  "extract_attributes": true,    // Extract age, gender, emotion
  "extract_landmarks": true,     // Extract facial landmarks
  "generate_embedding": true,    // Generate face embedding
  "crop_faces": true             // Create cropped face images
}

Processing Flow

Output Schema

This feature extractor will output as features in the feature store.

{
  "document_id": "doc_abc123",
  "collection_id": "col_xyz789",
  "source_object_id": "obj_def456",
  
  // Face detection results
  "face": {
    "id": "face_12345",
    "confidence": 0.96,
    "bounding_box": {
      "x": 125,
      "y": 80,
      "width": 120,
      "height": 150
    },
    "attributes": {
      "age_estimate": 32,
      "gender": "female",
      "emotion": "happy",
      "confidence": 0.89
    },
    "embedding": {
      "model": "facenet_v2",
      "dimension": 512,
      "vector": [0.12, 0.34, ...], // Truncated for brevity
      "normalized": true
    },
    "cropped_face_url": "https://storage.example.com/faces/face_12345.jpg"
  },
  
  // Media metadata
  "media": {
    "type": "image", // or "video"
    "filename": "team_photo.jpg",
    "width": 1920,
    "height": 1080,
    "timestamp": null, // For video, this would be the frame timestamp
    "frame_number": null // For video, this would be the frame number
  }
}