Generate embeddings from video content for semantic search
The Video Embedding extractor processes video content and generates vector embeddings that enable semantic search capabilities.
The Video Embedding feature extractor analyzes video content to generate vector representations (embeddings) that capture the semantic meaning of the visual content. These embeddings enable powerful semantic search capabilities across video libraries.
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
video_url | string | Yes | - | URL pointing to the video file to be processed. Supported formats: MP4, MOV, AVI |
model_name | string | No | ”default” | Name of the embedding model to use |
embedding_interval | float | No | 5.0 | Interval (in seconds) at which to extract embeddings |
include_audio | boolean | No | true | Whether to include audio features in the embedding |
The extractor supports different embedding models optimized for various use cases:
Model | Description | Best For |
---|---|---|
default | Balanced model for general content | General video search |
visual-detailed | Focuses on detailed visual features | Visual content search |
multimodal | Combines visual and audio signals | Rich multimedia content |
Option | Type | Default | Description |
---|---|---|---|
embedding_interval | float | 5.0 | Time interval (in seconds) between embedding extractions |
normalize | boolean | true | Whether to normalize embedding vectors |
embedding_dimension | integer | 512 | Dimension of the output embedding vector |
This feature extractor will output as a feature vector
in the feature store.
Generate embeddings from video content for semantic search
The Video Embedding extractor processes video content and generates vector embeddings that enable semantic search capabilities.
The Video Embedding feature extractor analyzes video content to generate vector representations (embeddings) that capture the semantic meaning of the visual content. These embeddings enable powerful semantic search capabilities across video libraries.
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
video_url | string | Yes | - | URL pointing to the video file to be processed. Supported formats: MP4, MOV, AVI |
model_name | string | No | ”default” | Name of the embedding model to use |
embedding_interval | float | No | 5.0 | Interval (in seconds) at which to extract embeddings |
include_audio | boolean | No | true | Whether to include audio features in the embedding |
The extractor supports different embedding models optimized for various use cases:
Model | Description | Best For |
---|---|---|
default | Balanced model for general content | General video search |
visual-detailed | Focuses on detailed visual features | Visual content search |
multimodal | Combines visual and audio signals | Rich multimedia content |
Option | Type | Default | Description |
---|---|---|---|
embedding_interval | float | 5.0 | Time interval (in seconds) between embedding extractions |
normalize | boolean | true | Whether to normalize embedding vectors |
embedding_dimension | integer | 512 | Dimension of the output embedding vector |
This feature extractor will output as a feature vector
in the feature store.