Embeddings

Embeddings are dense vector representations of content that enable semantic search and similarity matching. Mixpeek provides state-of-the-art embedding models for different types of content.

Available Models

Text Embeddings

  • General Purpose: Optimized for broad text understanding
  • Domain-Specific: Specialized for particular industries
  • Multilingual: Support for multiple languages
  • Cross-Modal: Text-to-image alignment

Image Embeddings

  • Visual Features: Capture visual characteristics
  • Object-Based: Focus on object recognition
  • Scene Understanding: Capture scene context
  • Style-Based: Represent artistic styles

Video Embeddings

  • Temporal Features: Capture motion and changes
  • Frame-Level: Process individual frames
  • Scene-Level: Understand scene composition
  • Action-Based: Represent activities

Keyword Embeddings

  • SPLADE: Sparse lexical model

Model Selection

Factors to Consider

  1. Use Case

    • Search requirements
    • Similarity matching
    • Classification needs
    • Cross-modal applications
  2. Performance

    • Accuracy
    • Speed
    • Resource usage
    • Latency requirements
  3. Data Characteristics

    • Content type
    • Language
    • Domain
    • Scale

Available Models

Model IDModalityDimensionsDescription
textText768General purpose text embedding, multilingual
imageImage1024Visual feature embedding
videoVideo1536Temporal feature embedding
multimodalMultiple1024Cross-modal embedding
keywordTextVariableSPLADE sparse lexical model

Best Practices

Preprocessing

  • Text Normalization: Clean and standardize text
  • Image Resizing: Standardize dimensions
  • Quality Control: Filter low-quality inputs
  • Format Conversion: Ensure compatible formats

Optimization

  • Batch Processing: Generate embeddings in batches
  • Caching: Store frequently used embeddings
  • Dimension Reduction: Use when appropriate
  • Quality Thresholds: Filter poor embeddings