Databases
Pinecone
Databases
Pinecone
Video
We’ll be using vuse-generic-v1
to build a collection of 1 second interval video chunks into a 768 dimension embedding collection.
You’ll need to create a Pinecone index with 768 dimensions
for
vuse-generic-v1
model embeddings. We’re calling it video_index
.
Ingest
from mixpeek import Mixpeek
import pinecone
# Initialize the Mixpeek client with your API key
mixpeek = Mixpeek("YOUR_API_KEY")
# Initialize Pinecone
pinecone.init(api_key="YOUR_PINECONE_API_KEY", environment="YOUR_PINECONE_ENVIRONMENT")
index = pinecone.Index("video_index")
# Process video chunks
processed_chunks = mixpeek.tools.video.process(
video_source="https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/Jurassic+Park+(2).mp4",
chunk_interval=1, # 1 second intervals
resolution=[720, 1280]
)
for i, chunk in enumerate(processed_chunks):
print(f"Processing video chunk: {i}")
# embed each chunk
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=chunk['base64_chunk'],
input_type="base64"
)
# Upsert to Pinecone
index.upsert(
vectors=[(str(i), embed_response['embedding'], {
"start_time": chunk["start_time"],
"end_time": chunk["end_time"]
})]
)
Text Query
query = "two boys inside a car"
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=query,
input_type="text"
)
results = index.query(
vector=embed_response['embedding'],
top_k=10,
include_metadata=True
)
for result in results['matches']:
print(result)
Video Query
# we'll use a cartoon version of jurassic park
file_url = "https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/rabbit-jurassic.mp4"
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=file_url,
input_type="url"
)
results = index.query(
vector=embed_response['embedding'],
top_k=10,
include_metadata=True
)
for result in results['matches']:
print(result)
Image
We’ll be using clip-v1
to build a collection of image embeddings with 512 dimensions.
You’ll need to create a Pinecone index with 512 dimensions
for clip-v1
model embeddings. We’re calling it image_index
.
Ingest
from mixpeek import Mixpeek
import pinecone
# Initialize the Mixpeek client with your API key
mixpeek = Mixpeek("YOUR_API_KEY")
# Initialize Pinecone
pinecone.init(api_key="YOUR_PINECONE_API_KEY", environment="YOUR_PINECONE_ENVIRONMENT")
index = pinecone.Index("image_index")
# List of image URLs to process
image_urls = [
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/image1.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/image2.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/image3.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/image4.jpg"
]
for i, url in enumerate(image_urls):
print(f"Processing image: {url}")
# Embed each image
embed_response = mixpeek.embed.image(
model_id="openai-clip-vit-base-patch32",
input=url,
input_type="url"
)
# Upsert to Pinecone
index.upsert(
vectors=[(str(i), embed_response['embedding'], {"image_url": url})]
)
Text Query
query = "a cat sitting on a windowsill"
embed_response = mixpeek.embed.image(
model_id="openai-clip-vit-base-patch32",
input=query,
input_type="text"
)
results = index.query(
vector=embed_response['embedding'],
top_k=5,
include_metadata=True
)
for result in results['matches']:
print(result)
Image Query
# Use an image from the same bucket as a query
query_image = "https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/pinecone/query_image.jpg"
embed_response = mixpeek.embed.image(
model_id="clip-v1",
input=query_image,
input_type="url"
)
results = index.query(
vector=embed_response['embedding'],
top_k=5,
include_metadata=True
)
for result in results['matches']:
print(result)
Was this page helpful?