Feature Extractors
Video Embedding
Generate embeddings from video content for semantic search
The Video Embedding extractor processes video content and generates vector embeddings that enable semantic search capabilities.
Overview
The Video Embedding feature extractor analyzes video content to generate vector representations (embeddings) that capture the semantic meaning of the visual content. These embeddings enable powerful semantic search capabilities across video libraries.
Required Inputs
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
video_url | string | Yes | - | URL pointing to the video file to be processed. Supported formats: MP4, MOV, AVI |
model_name | string | No | ”default” | Name of the embedding model to use |
embedding_interval | float | No | 5.0 | Interval (in seconds) at which to extract embeddings |
include_audio | boolean | No | true | Whether to include audio features in the embedding |
Configurations
Embedding Models
The extractor supports different embedding models optimized for various use cases:
Model | Description | Best For |
---|---|---|
default | Balanced model for general content | General video search |
visual-detailed | Focuses on detailed visual features | Visual content search |
multimodal | Combines visual and audio signals | Rich multimedia content |
Configuration Examples
Default
Visual Detailed
Multimodal
Base Configuration
Option | Type | Default | Description |
---|---|---|---|
embedding_interval | float | 5.0 | Time interval (in seconds) between embedding extractions |
normalize | boolean | true | Whether to normalize embedding vectors |
embedding_dimension | integer | 512 | Dimension of the output embedding vector |
Configuration Examples
Sample
Processing Flow
Output Schema
This feature extractor will output as a feature vector
in the feature store.
Was this page helpful?