Databases
Redis
Video
We’ll be using vuse-generic-v1
to build a collection of 1 second interval video chunks into a 768 dimension embedding collection.
You’ll need to have Redis installed with the RediSearch module. We’ll create
an index called video_idx
for the video embeddings.
Ingest
from mixpeek import Mixpeek
from redis import Redis
from redis.commands.search.field import VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
# Initialize the Mixpeek client with your API key
mixpeek = Mixpeek("YOUR_API_KEY")
# Initialize Redis client
redis_client = Redis(host='localhost', port=6379, db=0)
# Create index for video embeddings
video_schema = (
VectorField("embedding", "HNSW", {"TYPE": "FLOAT32", "DIM": 768, "DISTANCE_METRIC": "COSINE"})
)
redis_client.ft("video_idx").create_index(
fields = [video_schema],
definition = IndexDefinition(prefix=["video:"], index_type=IndexType.HASH)
)
# Process video chunks
processed_chunks = mixpeek.tools.video.process(
video_source="https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/Jurassic+Park+(2).mp4",
chunk_interval=1, # 1 second intervals
resolution=[720, 1280]
)
for i, chunk in enumerate(processed_chunks):
print(f"Processing video chunk: {i}")
# embed each chunk
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=chunk['base64_chunk'],
input_type="base64"
)
# Add to Redis
redis_client.hset(f"video:{i}", mapping={
"embedding": embed_response['embedding'],
"start_time": chunk["start_time"],
"end_time": chunk["end_time"]
})
Text Query
query = "two boys inside a car"
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=query,
input_type="text"
)
query_vector = embed_response['embedding']
results = redis_client.ft("video_idx").search(
f"*=>[KNN 10 @embedding $query_vector AS score]",
query_params = {"query_vector": query_vector}
)
for result in results.docs:
print(result)
Video Query
# we'll use a cartoon version of jurassic park
file_url = "https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/rabbit-jurassic.mp4"
embed_response = mixpeek.embed.video(
model_id="vuse-generic-v1",
input=file_url,
input_type="url"
)
query_vector = embed_response['embedding']
results = redis_client.ft("video_idx").search(
f"*=>[KNN 10 @embedding $query_vector AS score]",
query_params = {"query_vector": query_vector}
)
for result in results.docs:
print(result)
Image
We’ll be using openai-clip-vit-base-patch32
to build a collection of image embeddings with 512 dimensions.
You’ll need to have Redis installed with the RediSearch module. We’ll create
an index called image_idx
for the image embeddings.
Ingest
from mixpeek import Mixpeek
from redis import Redis
from redis.commands.search.field import VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
# Initialize the Mixpeek client with your API key
mixpeek = Mixpeek("YOUR_API_KEY")
# Initialize Redis client
redis_client = Redis(host='localhost', port=6379, db=0)
# Create index for image embeddings
image_schema = (
VectorField("embedding", "HNSW", {"TYPE": "FLOAT32", "DIM": 512, "DISTANCE_METRIC": "COSINE"})
)
redis_client.ft("image_idx").create_index(
fields = [image_schema],
definition = IndexDefinition(prefix=["image:"], index_type=IndexType.HASH)
)
# List of image URLs to process
image_urls = [
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/image1.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/image2.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/image3.jpg",
"https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/image4.jpg"
]
for i, url in enumerate(image_urls):
print(f"Processing image: {url}")
# Embed each image
embed_response = mixpeek.embed.image(
model_id="openai-clip-vit-base-patch32",
input=url,
input_type="url"
)
# Add to Redis
redis_client.hset(f"image:{i}", mapping={
"embedding": embed_response['embedding'],
"image_url": url
})
Text Query
query = "a cat sitting on a windowsill"
embed_response = mixpeek.embed.image(
model_id="openai-clip-vit-base-patch32",
input=query,
input_type="text"
)
query_vector = embed_response['embedding']
results = redis_client.ft("image_idx").search(
f"*=>[KNN 5 @embedding $query_vector AS score]",
query_params = {"query_vector": query_vector}
)
for result in results.docs:
print(result)
Image Query
# Use an image from the same bucket as a query
query_image = "https://mixpeek-public-demo.s3.us-east-2.amazonaws.com/redis/query_image.jpg"
embed_response = mixpeek.embed.image(
model_id="openai-clip-vit-base-patch32",
input=query_image,
input_type="url"
)
query_vector = embed_response['embedding']
results = redis_client.ft("image_idx").search(
f"*=>[KNN 5 @embedding $query_vector AS score]",
query_params = {"query_vector": query_vector}
)
for result in results.docs:
print(result)
Was this page helpful?