Skip to main content
The Mixpeek MCP (Model Context Protocol) server exposes all Mixpeek operations as tools that can be used by Claude, Claude Code, and other AI applications that support MCP.
What is MCP? The Model Context Protocol is an open protocol developed by Anthropic that standardizes how AI applications connect to external data sources and tools. Learn more about MCP

Overview

The Mixpeek MCP server provides 43 comprehensive tools covering all Mixpeek operations, allowing AI assistants to:
  • Create and manage namespaces, buckets, and collections
  • Upload and process files with feature extractors
  • Build multi-stage search pipelines
  • Execute semantic searches and retrievals
  • Manage taxonomies and clusters
  • Start conversational AI agent sessions

Features

Complete API Coverage

All 43 Mixpeek operations exposed as MCP tools

Dual Transport

Stdio for local development, HTTP/SSE for production

Native Integration

Shares database connections, no extra infrastructure

Streaming Support

Real-time responses for retrievers and agents

Quick Start

Connect to the Mixpeek MCP server using your existing API key. No infrastructure to manage!

Claude Desktop Setup

Add this to your Claude Desktop config: macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json
{
  "mcpServers": {
    "mixpeek": {
      "url": "https://mcp.mixpeek.com",
      "headers": {
        "Authorization": "Bearer YOUR_MIXPEEK_API_KEY"
      }
    }
  }
}

Claude Code Setup

Add to your Claude Code MCP settings:
{
  "mcpServers": {
    "mixpeek": {
      "url": "https://mcp.mixpeek.com",
      "headers": {
        "Authorization": "Bearer YOUR_MIXPEEK_API_KEY"
      }
    }
  }
}
That’s it! Replace YOUR_MIXPEEK_API_KEY with your API key from the Mixpeek dashboard.
Need an API key? Sign up at mixpeek.com to get your free API key.

Available Tools

The MCP server exposes 43 tools across 9 categories:

Namespace Management (5 tools)

Manage isolated workspaces for multi-tenant applications.
ToolDescription
create_namespaceCreate a new workspace
list_namespacesList all namespaces
get_namespaceGet namespace details
update_namespaceUpdate namespace configuration
delete_namespaceDelete namespace

Bucket Management (6 tools)

File storage and object management.
ToolDescription
create_bucketCreate file storage bucket
list_bucketsList all buckets
get_bucketGet bucket details
update_bucketUpdate bucket configuration
delete_bucketDelete bucket
upload_objectUpload file from URL or local path

Collection Management (7 tools)

Document collections with feature extraction.
ToolDescription
create_collectionCreate collection with feature extractors
list_collectionsList all collections
get_collectionGet collection details
update_collectionUpdate collection configuration
clone_collectionClone existing collection
trigger_collectionTrigger processing pipeline
delete_collectionDelete collection

Document Management (5 tools)

CRUD operations on documents.
ToolDescription
create_documentAdd document to collection
list_documentsQuery documents with filters
get_documentGet document by ID
update_documentUpdate document data
delete_documentDelete document

Retriever Management (7 tools)

Multi-stage search pipelines with 23 retriever stages.
ToolDescription
create_retrieverCreate multi-stage search pipeline
list_retrieversList all retrievers
get_retrieverGet retriever configuration
update_retrieverUpdate retriever metadata
clone_retrieverClone existing retriever
execute_retrieverExecute search pipeline
delete_retrieverDelete retriever
Supported Retriever Stages (23 total):
  • Search: feature_search, hybrid_search, semantic_search
  • Filter: attribute_filter, llm_filter, query_expand
  • Rank: sort_relevance, sort_attribute, rerank, mmr
  • Transform: group_by, aggregate, cluster, sample, summarize, json_transform
  • Enrich: document_enrich, taxonomy_enrich, llm_enrich
  • External: api_call, external_web_search, web_scrape, sql_lookup, code_execution, rag_prepare

Taxonomy Management (5 tools)

Hierarchical classification systems.
ToolDescription
create_taxonomyCreate classification hierarchy
list_taxonomiesList all taxonomies
get_taxonomyGet taxonomy details
execute_taxonomyApply taxonomy classification
delete_taxonomyDelete taxonomy

Cluster Management (4 tools)

Document clustering and discovery.
ToolDescription
create_clusterCreate clustering configuration
list_clustersList all clusters
execute_clusterRun clustering algorithm
delete_clusterDelete cluster

Agent Management (3 tools)

Conversational AI sessions.
ToolDescription
create_agent_sessionStart conversational AI session
send_agent_messageSend message to agent
get_agent_historyGet conversation history

Search (1 tool)

Global namespace search.
ToolDescription
search_namespaceSearch across all resources

Usage Examples

Example 1: Create Collection with Feature Extractor

Ask Claude in natural language:
"Create a collection called 'videos' in my namespace with the multimodal
extractor to process video files with scene detection"
Claude will use the create_collection tool:
{
  "namespace_id": "ns_abc123",
  "collection_name": "videos",
  "feature_extractors": [
    {
      "feature_extractor_name": "multimodal_extractor",
      "version": "v1",
      "parameters": {
        "split_method": "scene",
        "scene_detection_threshold": 0.3,
        "run_transcription": true,
        "run_video_description": true
      }
    }
  ]
}

Example 2: Build Multi-Stage Retriever

Ask Claude:
"Create a retriever that searches my videos collection, reranks the top 50
results with Cohere to get the best 10, and adds GPT-4 summaries"
Claude uses create_retriever:
{
  "namespace_id": "ns_abc123",
  "retriever_name": "video-search",
  "collection_identifiers": ["videos"],
  "stages": [
    {
      "stage_name": "feature_search",
      "parameters": {
        "features": ["multimodal"],
        "top_k": 50,
        "min_score": 0.7
      }
    },
    {
      "stage_name": "rerank",
      "parameters": {
        "inference_name": "cohere-rerank",
        "top_k": 10
      }
    },
    {
      "stage_name": "llm_enrich",
      "parameters": {
        "inference_name": "gpt-4",
        "fields_to_generate": [
          {
            "name": "summary",
            "prompt": "Summarize this video segment in 2 sentences"
          }
        ]
      }
    }
  ]
}
Ask Claude:
"Search for videos about machine learning tutorials using the video-search retriever"
Claude uses execute_retriever:
{
  "namespace_id": "ns_abc123",
  "retriever_id": "ret_xyz789",
  "inputs": {
    "query": "machine learning tutorial"
  }
}

Authentication

The MCP server uses your existing Mixpeek API key for authentication. Each tool call is authenticated using the same permission system as the REST API. Security Features:
  • ✅ All requests authenticated via API key
  • ✅ Same RBAC permissions as REST API
  • ✅ Automatic rate limiting per organization
  • ✅ Audit logging for all operations
  • ✅ TLS encryption for all connections
Keep your API key secure! Never commit API keys to version control or share them publicly.

How It Works

The Mixpeek MCP server is a hosted service that provides a Model Context Protocol interface to all Mixpeek operations. Architecture:
┌─────────────────┐
│  Claude Desktop │
│  or Claude Code │
└────────┬────────┘
         │ HTTP/SSE + API Key


┌─────────────────────────┐
│   MCP Server (Hosted)   │
│  https://mcp.mixpeek.com │
├─────────────────────────┤
│  • 43 MCP Tools         │
│  • API Key Auth         │
│  • SSE Streaming        │
│  • Rate Limiting        │
└────────┬────────────────┘
         │ Direct Service Calls


┌─────────────────────────┐
│   Mixpeek Services      │
├─────────────────────────┤
│  • MongoDB (metadata)   │
│  • Redis (cache)        │
│  • Qdrant (vectors)     │
│  • S3 (storage)         │
└─────────────────────────┘
Key Features:
  • Fully Managed: No infrastructure to deploy or maintain
  • Shared Resources: Uses the same databases as the REST API
  • Real-time Streaming: SSE support for retriever and agent responses
  • Secure: TLS encryption, API key authentication, rate limiting

Testing

The MCP server includes comprehensive tests:
# Run all tests
pytest mixpeek_mcp/tests/ -v

# Run specific test modules
pytest mixpeek_mcp/tests/test_auth.py -v
pytest mixpeek_mcp/tests/test_tools.py -v
pytest mixpeek_mcp/tests/test_server.py -v

# Run with coverage
pytest mixpeek_mcp/tests/ --cov=mixpeek_mcp --cov-report=html

Use Cases

Let Claude configure your entire data processing pipeline:
  • “Set up a collection to process PDFs with OCR and extract tables”
  • “Create a retriever that searches videos by transcript and visual similarity”
  • “Build a taxonomy to classify customer support tickets”
Explore your data conversationally:
  • “What collections do I have and how many documents are in each?”
  • “Show me the most recent uploads to my images bucket”
  • “Find clusters of similar documents in my research collection”
Build RAG applications using natural language:
  • “Create a retriever that searches my knowledge base and prepares results for GPT-4”
  • “Add a reranking stage to improve relevance”
  • “Enrich results with summaries and key points”

Troubleshooting

MCP Server Not Connecting

Issue: Claude Code can’t connect to the MCP server Solutions:
  • Verify the cwd path is correct in your MCP configuration
  • Check that all environment variables are set (MONGO_URI, REDIS_URL, etc.)
  • Run the server manually to see error messages: python -m mixpeek_mcp.main --transport stdio
  • Check Claude Code logs for connection errors

Tool Execution Fails

Issue: Tools return errors when executed Solutions:
  • Verify your Mixpeek API key is valid
  • Ensure the namespace exists before creating resources in it
  • Check that required services (MongoDB, Redis, Qdrant) are running
  • Review tool parameters match the expected schema

Slow Response Times

Issue: MCP tools are slow to respond Solutions:
  • For local development, use stdio transport (faster than HTTP)
  • Increase timeout settings if processing large files
  • Check database connection pool settings
  • Monitor Redis and Qdrant performance

Next Steps

Additional Resources


Questions or issues? File an issue on GitHub or contact Mixpeek support.